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EXECUTIVE SUMMARY

This report summarizes the development of a procedure to be used for the design of
whitetopping pavements. While whitetopping overlays have been constructed since
1918, design guidelines for this rehabilitative technique have not been available until
recently. In 1994, the Portland Cement Association sponsored research to develop a
procedure for the design of ultra-thin whitetopping pavement. However, these ultra-thin
(4 in. concrete or less) overlays require closely spaced joints (48 in. or less) and may not
be practical for rehabilitating high volume traffic roadways as targeted by the State of
Colorado. Slightly thicker concrete sections (5 to 7 in.) and wider joint spacings (up to
12 ft) were studied in this research project.

Three sites were evaluated in this study — a 1,000-ft-long frontage road on Santa Fe Drive
near Denver constructed in May 1996, a one-mile-long section of State Road 119 in
Longmont constructed in August 1996, and a three-mile-long section of US Rt. 287 near
Lamar constructed in July, 1997. A total of 11 slabs were instrumented with strain gages.
In general, gages were located at the center of the slab and along the longitudinal joint.
Some slabs were instrumented with diagonal corner and transverse joint wheelpath gages.
Typically, embedment strain gages were installed during construction at the
asphalt/concrete interface and ¥z in. above the interface in the concrete layer. Surface
gages were installed prior to each load testing event.

The Santa Fe and Longmont sites were load tested at about 28 days and 1 year while the
Lamar site was load tested at 28 days only. For load testing, CDOT trucks were loaded
to provide a 20-kip single axle load. The load was applied statically at the strain gage
locations (shown in appendix photos) and strain data was recorded at all depths of the
pavement. To evaluate the effects of temperature and related curling, load tests were
performed several times throughout the day for each load testing event. Thermocouples
were installed at multiple depths in the pavement and monitored throughout each load
testing event. Surface profile measurements were performed at several intervals during
load testing by CDOT personnel. Profile data was compared to baseline measurements
recorded shortly after slab construction to evaluate the degree of slab response to
changing temperature gradients. CDOT personnel cast concrete cylinders and beams
during construction. The samples were tested at ages corresponding to the load testing
events so that strength parameters of the concrete were known. Cores were removed
from the pavement to evaluate the shear strength between the layers as well as the asphalt
properties.

The effect of surface preparation during construction was studied by including slabs
constructed on milled and unmilled asphalt. Also, the effect of milling newly placed
(repaired) or existing asphalt was evaluated. It was found that existing asphalt pavement
should be milled and cleaned prior to concrete placement for an overall reduction of 25
percent in the critical load-induced stresses. However, new asphalt, such as that placed in
repair patches, should not be milled prior to concrete placement to avoid a 50 percent
increase in critical load-induced stresses.
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Measured load-induced stresses at zero temperature gradient were compared to
theoretical stresses calculated using the finite element program ILSL2. It was found
during the PCA research that whitetopping pavements are partially bonded and cannot be
directly modeled as fully-bonded or fully-unbonded sections. Therefore, since ILSL2
cannot model partially bonded layers, a correction coefficient was developed to equate
theoretical (fully-bonded) stresses to measured stresses. A coefficient of 1.65 was
calculated at the 95 percent confidence level. At the discretion of an experienced design
engineer, the coefficient can be reduced based on the required reliability of the project.

A similar analysis was used to calculate the critical asphalt strain due to a partial, as
opposed to full, bond. If the layers were fully bonded, the strain at the bottom of the
concrete would be the same as the strain at the top of the asphalt. However, measured
strains indicate that a coefficient of 0.842 is required to reduce the asphalt strains due to
the partial bond between the layers.

The effect of temperature gradient was incorporated into the design procedure by
comparing measured load- and temperature-induced stresses to theoretical stresses
(converted using above coefficients) calculated at zero temperature gradient. If
temperature does not effect whitetopping pavement, load-induced stresses would be equal
throughout the day. However, it was found that the stress increases by a percentage equal
to 4.56 multiplied by the temperature gradient (°F/in.). This stress increase is due to a
loss of support at slab edges when curling occurs.

Equations were developed to predict the critical concrete stresses and asphalt strains. A
mechanistic design procedure is described which allows the evaluation of trial
whitetopping thicknesses and joint spacings. The procedure computes the concrete and
asphalt fatigue life for specific material properties. Iterations are required to determine
the appropriate parameters which provide the required design life for both concrete and
asphalt layers. A modified procedure was also developed incorporating an empirical
approach based on equivalent single axle loads (ESALs).

Sensitivity analyses provided characteristics of whitetopping. Based on this research, a
minimum subgrade modulus of 150 pci may be required for some whitetopping. Also, an
asphalt thickness of 5 in. is recommended. And finally, as with the AASHTO procedure,
the method is not too sensitive to the number of ESALs. However, these conclusions
need to be verified by future work and long-term performance of test sections.

IMPLEMENTATION STATEMENT

Whitetopping is quickly becoming a popular method used nationwide to rehabilitate
deteriorated asphalt pavements. Since the flexible asphalt surface is replaced by rigid
concrete, the technique offers superior service, long life, low maintenance, low life-cycle
cost, improved safety, and environmental benefits M. The critical stress and strain
prediction equations developed during this research are part of a first-generation design
procedure which will be verified and/or modified with the collection of additional data
from future research projects.






GUIDELINES FOR THE THICKNESS DESIGN OF BONDED
WHITETOPPING PAVEMENT IN THE STATE OF COLORADO

by

Scott M. Tarr, Matthew J. Sheehan, and Paul A. Okamoto

1.0 INTRODUCTION

Resurfacing existing asphalt concrete (AC) pavement with portland cement concrete
(PCC) is not a new concept. The use of whitetopping for rehabilitating deteriorated
asphalt pavements dates back to 1918. Whitetopping technology, however, has improved
over the years as the concrete paving technology itself has improved.

There are several advantages to resurfacing asphalt pavements with portland cement
concrete (whitetopping). Whitetopping can provide long-term benefits to the traveling
public as well as the highway or airport agency. It significantly reduces time and delays
accompanying the frequent maintenance of an asphalt surface. The proven durability and
long-term performance of a PCC surface decreases the maintenance time and life cycle
cost of the pavement. These advantages, in addition to the improvement in skid
resistance and safety (especially under wet conditions), compare favorably to asphalt
surfaces.

Design and construction procedures of whitetopping are well-established and explained
in detail in Portland Cement Association (PCA) and American Concrete Pavement
Association (ACPA) publications(l'3 ). Features including minimum slab thickness,
support characterization, and pre-overlay preparation are presented in these publications.
Until very recently, there were no bonded whitetopping guidelines to help the designer
determine the required PCC thickness for the specific material and environmental
parameters encountered. The pavement was either designed as a fully bonded or entirely
unbonded concrete overlay. Many states, such as Georgia, Tennessee, Kentucky, and
Colorado constructed whitetopping test sections on a trial and error basis. With the lack
of guidelines, if the pavement is over-designed, the section performs well at a high
construction cost. If the pavement is under-designed, the section requires maintenance or
reconstruction, and diminishes the confidence in whitetopping pavement rehabilitation.

Therefore, there is a need for rationally developed whitetopping thickness design
guidelines. Research testing conducted during this study allowed the development of a
mechanistic whitetopping design procedure for the State of Colorado.

* Engineer, Assistant Engineer, and Principal Engineer, respectively,
Construction Technology Laboratories, Inc., 5420 Old Orchard Road, Skokie, IL 60077
Phone: (847) 965-7500 Fax: (847) 965-6541



2.0 BACKGROUND

Plain concrete, reinforced concrete, and fibrous (fiber reinforced) concrete have been
used over the years for whitetopping, or resurfacing, flexible pavements“>?. In the
1940's and 1950's, plain concrete was mainly used in airports, both civil and military.
Thickness of concrete used in these projects ranged from 8 to 18 in. (200 to 460 mm).
Since 1960, plain concrete has been used extensively to resurface existing highway
pavements in states such as California, Utah, and Iowa. Concrete thicknesses of these
resurfacing projects ranged from 7 to 10 in. (175-250 mm). Continuous-reinforced
concrete and fiber-reinforced concrete were also used on a limited number of projects. In
1992, NCHRP synthesis 204"? listed 189 whitetopping projects constructed in the U.S.
since 1918. These projects included streets, highways, and airfield pavements.

Prior to the design guidelines reported herein, PCA and ACPA sponsored a research
study to develop thickness design guidelines for "ultrathin" whitetopping pavements
The term, "ultra-thin whitetopping” or UTW, refers to the process of resurfacing existing
asphalt pavements with concrete overlays with a maximum thickness of 4 in.". For the
PCA study, slabs located at the Spirit of St. Louis Airport in Chesterfield, MO were
instrumented with strain gages and loaded using a 20 kip single axle load (SAL). A total
of eight PCC slabs were instrumented and tested. Strain gages were located at potentially
critical locations on the slabs. It was concluded that, for ultra-thin whitetopping with
short joint spacing, the load location inducing the critical PCC stress is at the corner of
the slab. The critical location inducing maximum asphalt strain occurs at the midpoint of
the longitudinal joint.

21)

To determine an adjustment factor increasing the stress due to the partially bonded
condition, measured field load-induced flexural stresses were compared to fully bonded
theoretical stresses. In the PCA study, a factor of 1.36 (36% increase in stress due to
partial bonding) was determined based on the data collected in Missouri (average stress
increase of 19% with a standard deviation of 17%). This adjustment factor was applied
to stresses computed during a parametric study. Once the parametric study was complete
and the stresses were converted and adjusted to simulate measured field behavior, linear
regression techniques were used to develop equations predicting the critical stresses. The
equations included parameters of the whitetopping pavement which have a significant
impact on the induced concrete flexural stresses and asphalt flexural strains.

The PCA design procedure was developed as a guide for determining the PCC thickness
of ultra-thin whitetopping to be used on low-volume roadways, intersections, offramps,
etc. The maximum thickness and joint spacing included in the parametric study was 4 in.
and 50 in., respectively. The State of Colorado is interested in using whitetopping as a
technique for rehabilitating deteriorated asphalt highway pavements. The PCA design
procedure did not include the thicknesses and joint spacing necessary for projects of this
magnitude. Therefore, research has been conducted to develop bonded whitetopping
design guidelines for the State of Colorado.



3.0 APPROACH

The general techniques used in the development of the PCA ultra-thin whitetopping
design procedure were used to develop the Colorado guidelines. Field testing was
conducted to evaluate critical load locations for the thicker PCC layer with larger joint
spacings. The load-induced flexural strains were used to calibrate fully bonded stresses
computed using finite element analysis techniques to partially bonded stresses measured
in the field. Load testing was conducted throughout the course of a day in order to
develop a temperature correction to be applied to the critical stresses derived for zero
temperature gradient (zero slab temperature curling). Thickness design guidelines were
established for partially bonded whitetopping using field calibrated theoretical stresses.
Equations predicting the critical concrete flexural stresses and asphalt concrete strains for
use in whitetopping design are provided. The rationale for incorporating stress correction
factors, typical correction factors developed during this study, and recommendations for
modifying the factors are also discussed.

It was also requested that the developed mechanistic design procedure (based on an axle
load distribution obtained from traffic monitoring data) be converted so that the empirical
theory of Equivalent Single Axle Loads (ESALSs) could be used as the traffic input
information. This required extrapolating AASHTO axle load conversion factors to
include typical whitetopping thicknesses as the AASHTO design procedure does not
suggest conversion factors for a pavement thickness below 6 in. Two ESAL conversion
factors were developed based on actual traffic data (for Primary and Secondary
Highways) supplied by Colorado for 8 in. pavement thicknesses. In addition to ESAL
conversion factors, a nonlinear relationship was realized for PCC thicknesses determined
using the empirical (ESAL) and mechanistic (axle load) procedures. An additional
conversion factor was derived to equilibrate the empirical and mechanistic design
methods.

4.0 FIELD TESTING PROGRAM

In order to develop design guidelines for bonded whitetopping pavement systems, field
instrumentation and load testing was conducted at three different sites in Colorado. The
objectives of the field testing were to:

e determine the critical load location of whitetopping pavements

 study the effects of different AC surface preparation techniques

» measure the response of whitetopping pavements under traffic loading

» evaluate interface bonding strength between the concrete and the asphalt layers

* investigate the effect of pavement age on load-induced stresses

» calibrate theoretical with measured stresses to develop thickness design guidelines



A total of three test pavement sites were investigated as part of this study. Each site had
multiple test sections (slabs). The first two test sites were constructed during the summer
of 1996. These sections were load tested at approximately 28 days and 1 year after
construction. The third test section was constructed during the summer of 1997 and was
only tested at 28 days after construction.

4.1 CDOT Test Pavements

The first test project (CDOT1) was constructed on a frontage road to Santa Fe Drive in
Denver, CO. This project had a total length of 1,000 feet, consisting of two 500-ft test
sections. The first test section had 4-in.-thick concrete slabs placed on top of a 5-in.-thick
newly placed asphalt pavement layer. No special asphalt surface preparation was
attempted. The second section had 5-in.-thick concrete slabs on top of a 4-in.-thick
asphalt layer. A portion of the asphalt surface in the second test section was milled
creating a third test section. All concrete slabs had a 60 in. joint spacing. Tie bars were
installed along longitudinal joints, except these between curbs and traffic lanes. No
dowel bars were used for transverse joints. Both longitudinal and transverse joints were
sawcut to 1/3 of the concrete slab depth. Soil underneath the pavement was classified as
A-7-6 and reportedly had a modulus of subgrade reaction (k) of approximately 150 pci.

The second whitetopping project in Colorado (CDOT?2) involved rehabilitation of about a
one-mile long, two lane existing asphalt pavement on State Road 119 near Longmont,
CO. Many variables were incorporated in this project, including various concrete slab
dimensions and thicknesses, with different asphalt surface preparation. Three different
asphalt surface preparation techniques were utilized. For the east half of the pavement, a
1 Y2 in. new asphalt layer was placed on top of the existing asphalt concrete pavement,
with a concrete slab thickness of 5 in. On the passing lane of the east half of the
pavement, 4 ¥2 in.-thick concrete slabs were placed directly on top of the existing asphalt
pavement. For the traffic lane, the asphalt pavement was milled 1 %2 in., resulting in
concrete slab thicknesses of 6 in. No particular effort was made to clean the asphalt
surface. However, all the asphalt pavement surfaces were washed prior to concrete
placement. Tie bars were used for most of the longitudinal joints. Dowel bars were only
installed along the transverse joints of slabs with longer joint spacings (12 ft). The
modulus of subgrade reaction was reportedly 340 pci.

The third whitetopping project in Colorado (CDOT3) involved rehabilitation of about a
three-mile long section of two lane pavement on heavily truck-trafficked US Rt. 287 near
Lamar, CO. Variables incorporated into six sections of this project included various
concrete slab dimensions and joint reinforcement. Both the north and southbound lanes
and shoulders were milled and thoroughly cleaned prior to concrete placement. The
milled asphalt thickness was measured to be about 7 in. The design specified a 6 in.
concrete whitetopping slab and was based on a 225 pci modulus of subgrade reaction.
Tie bars were used for all the longitudinal joints at varying spacing. Except for one
section, dowel bars were installed at all transverse joints at varying spacing. After
construction, the northbound lane experienced a significant degree of cracking. This was



attributed to placing the whitetopping on a hot asphalt surface accelerating the drying on
the bottom of the concrete which initiated shrinkage cracking. An attempt was made to
keep the asphalt surface cool by spraying water during construction of the southbound
driving lane and shoulder.

4.2 Description of Test Slabs

Three slabs in the first project were instrumented and load tested at Santa Fe Drive
(layouts and photographs shown in Appendix A). Slab 1 consisted of a 4-in.-thick
concrete layer on top of a 5-in.-thick asphalt layer and slabs 2 and 3 had 5-in. of concrete
on a 4-in.-thick asphalt layer. All test slabs were located in the southbound lane and were
adjacent to the curbs. No tie bars were used along joints between curbs and traffic lanes.
Therefore, all three test slabs had a tied joint on the east side and a free edge on the west
side.

Five slabs were instrumented with strain gages and load tested at Longmont (layouts and
photos in Appendix B). Slabs had different dimensions, concrete slab thickness and
concrete-asphalt interface conditions. Concrete design thicknesses ranged from 4.5 to 6
in., asphalt thicknesses ranged from approximately 3 to 5 in., and joint spacings ranged
from 6 to 12 ft. The asphalt surface consisted of old asphalt concrete, new asphalt
concrete, and milled asphalt concrete. Test slabs were primarily located in the outside
driving lane with tied concrete shoulders.

Three slabs were instrumented with strain gages and load tested at Lamar (layouts and
photos in Appendix C). Thicknesses ranged from 5.5 to 7.3 in. and 6.5 to 7.5 in. for the
PCC and AC layers, respectively. Joint spacings ranged from 6 to 12 ft. The existing
asphalt surface was milled prior to concrete placement. Test slabs were located in the
outside driving lane with tied concrete shoulders.

4.3 Instrumentation and Load Testing

All three test slabs of the Santa Fe Drive project were instrumented before the concrete
pavement construction. Each test slab was instrumented with 12 strain gages. Three sets
of two prepared embedment gages were installed, one on top of asphalt surface and the
other in the concrete 1/2 in. above the asphalt top. These gages were located at the
longitudinal edges and center of the slab along the transverse centerline. For each slab, a
free edge joint and a tied joint were instrumented. Surface gages were also installed
before load testing, including one on top of each of the three sets of embedment gages
and three gages along one corner diagonal line. Load testing on the Santa Fe Drive
project was conducted in August, 1996 and August, 1997.

Each Longmont site test slab was instrumented with 8 strain gages. Since the slabs at the
Longmont site did not include a free edge, sets of two prepared gages were installed at
one tied longitudinal edge and at the slab centers. The vertical gage locations were



identical to the locations at the Santa Fe site (one on top of asphalt surface and the other
in the concrete 1/2 in. above the asphalt top). Surface gages were also installed directly
above the embedment gage locations. Load testing was performed at the Longmont test
site in September, 1996 and August, 1997.

The project in Lamar only included surface gages and did not include embedment gages.
Two of the four surface gage locations were identical to the gage locations at the
Longmont site (along the longitudinal joint and at the slab center). An attempt was made
to investigate a maximum surface tensile stress due to a corner loading by installing two
additional surface gages along a longitudinal and transverse joint 18 in. from the corner.
Load testing was performed at the Lamar test site in September, 1997.

Thermocouple trees were installed before concrete pavement construction to monitor
temperature gradients during load testing. Thermocouples were installed at five different
depths in the pavement, at top of concrete slab, mid-depth of the concrete, concrete-
asphalt interface, 2.5 in. in the asphalt, and near the bottom of the asphalt layer.

To document the relative temperature-induced curling deformation of the whitetopping
slab surface, reference rods were driven into subgrade soil prior to construction. To
minimize the effects of temperature on the movement of the reference rods, they were
fabricated using invar steel with a very low coefficient of thermal expansion. The
reference rods were positioned so that the first step of a dipstick profile measuring device
would be from the rod to the corner of the test slab.

The dipstick was then used to record the relative elevations of the test slab by traversing a
grid across the slab surface. For each site, initial surface profiles were measured using a
dipstick, provided by CDOT, on selected slabs the following morning after concrete
placement. These profiles were used as base lines for determining slab curl movements
during load testing using this procedure each time the load testing was performed
throughout the day. Curling profiles were recorded for the partially bonded whitetopping
slabs.

Load testing was conducted several times throughout the day for each slab. Static and
dynamic 20 kip single axle load flexural strains were measured. Air and pavement
temperatures at different depths were recorded throughout the load testing period.

4.4 Laboratory Tests of Concrete Cylinders, Beams, and Pavement Cores

Concrete cylinders and beams were cast during pavement construction for the Santa Fe
and Longmont test sites. Cylinders were tested at 28 and 365 days for their modulus of
elasticity and compressive strength. The beams were tested at 28 days to determine their
flexural strength. Pavement cores were drilled in conjunction with load testing, and two
cores were typically taken from each test slab. Core thickness was measured, and direct
shear® testing was conducted to determine the interface shear strength between the



concrete and asphalt layers. Laboratory test results and test slab characteristics are
presented in Table 4.4.1.

Concrete cylinders and beams were not available for testing from the Lamar site.
Concrete cores were drilled in conjunction with the load testing performed at 28 days.
Material characteristics were determined from core tests and are presented in Table 4.4.1.

4.5 The Effect Interface Preparation on Shear Strength and Load Induced Strains

The effects of interface preparation on load induced pavement response was studied at
two of the three test projects evaluated. Project CDOT1 on Santa Fe Frontage Road was
constructed with new asphalt. The joint spacing was 5 ft. Two of the test slabs
instrumented with strain gages had a thickness of 5 in. and were constructed on a 4 in.
asphalt base. For one of the slabs, the new asphalt concrete was milled prior to
constructing the whitetopping. Also, two of the slabs constructed at Project CDOT2 in
Longmont offered the opportunity to directly evaluate the effect of milling the asphalt
surface. Both CDOT? slabs had a joint spacing of 6 ft and were constructed on existing
asphalt concrete pavement (one milled and one unmilled).

For all the test slabs at each project, cores were removed for testing. The interface shear
strength was measured for each core removed and the average shear strength for each of
the test slabs is shown in Table 4.4.1. For each of the test slabs, regardless of interface
condition, the shear strength increased between approximately 28 days and 1 year. For
newly placed asphalt, the interface shear strength increased by an average of 80 and 590
percent for unmilled and milled surfaces, respectively. The higher percentage for milled
surfaces is somewhat misleading, however, because the 28-day shear strength was the
lowest measured at about 10 psi. Existing milled asphalt shear strength increased by
approximately 54 percent over the first year of service. Unfortunately, due to the
necessity to close multiple lanes, the existing unmilled asphalt was unable to be tested at
1 year.

A comparison of the load-induced strains for milled relative to unmilled interfaces
revealed a significant difference between new and existing asphalt pavements
rehabilitated with whitetopping concrete. As shown in Figure 4.5.1, load induced strains
for newly placed asphalt were increased by an average of about 50 percent if the interface
was milled. On the contrary, for existing asphalt pavements, the load induced strains
were decreased by approximately 25 percent when interface milling was performed. The
data shown in the figure includes all strains collected from gages placed at multiple
depths and locations (edge, center, corner) of the test slabs. Therefore, some of the
strains are positive (tensile) and some are negative (compressive). While these
observations are significant findings, more testing should be performed to verify the
trends are constant for various joint spacings before incorporation into the design
procedure.
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5.0 MECHANISTIC WHITETOPPING THICKNESS DESIGN PROCEDURE

Guidelines for bonded whitetopping were established from field calibrated flexural
stresses and strains. This section includes the details of the steps followed during the
development of the design guidelines. Equations predicting the critical stresses and
strains are provided. The rationale for incorporating stress correction factors, typical
correction factors developed during this study, and recommendations for modifying the
factors are also discussed. A detailed design example is also presented with the steps
described and discussed.

The development process included the following elements:

1.

The critical load location for the design of whitetopping pavement was
determined by comparing the stress data collected for each load position.

Critical load-induced stresses were determined when there was a zero temperature
gradient.

An analysis between experimental and theoretical concrete stresses was made (no
temperature gradient). A calibration factor was developed to adjust theoretical
fully bonded stresses to measured partially bonded concrete stresses.

An adjustment factor was developed to convert theoretical fully bonded maximum
asphalt flexural strains to partially bonded strains.

To account for loss of support with temperature curling effects, an equation was
derived to incorporate the percent change in stress (from zero temperature
gradient) based on the unit temperature gradient (°F/in.).

The calculation of design concrete flexural stress and asphalt strain for a specific
set of design parameters involves the following steps:

» Maximum load-induced concrete stresses and asphalt strains were computed
for fully bonded whitetopping pavements using the finite element program
ILSL2®. A wide range of pavement parameters and material properties were
covered.

» Stepwise least squares linear regression techniques were used to derive
equations predicting concrete stresses and asphalt strains from different
pavement parameters and material properties.

e The theoretical load-induced concrete stresses are increased to account for the
partially bonded condition (step 3 above).

e The theoretical load-induced asphalt strains are decreased to account for the
partially bonded condition (step 4 above).
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e The increased load-induced concrete stresses are adjusted to account for loss
of support with temperature curling effects (step 5 above).

7. Whitetopping concrete thicknesses are established by limiting both the concrete
flexural stresses and asphalt flexural strains within safe limits under anticipated
traffic and environmental conditions during the pavement's design life. The
procedure uses fatigue concepts to evaluate the concrete and asphalt layers
separately. Therefore, for a given set of pavement parameters and material
properties, the concrete or the asphalt layer may govern the design.

5.1 Determination of Critical Load Location

The critical load location for the design of whitetopping pavement was determined by
comparing the stress data collected for each load position. For the parameters studied,
the critical load location inducing the highest tensile stress in the concrete layer was
established when the load was centered along a longitudinal free edge joint. For
whitetopping pavement, a free edge joint occurs when both the asphalt and concrete are
formed against a smooth vertical surface such as a formed concrete curb and gutter.
While it is reasonable that free edge loading produces the highest stress, it is more likely
that the joints loaded by traffic will not be free edges. Therefore, for the design
procedure, tied longitudinal joint loading was considered the critical load case, as shown
in Figure 5.1.1. A relationship between free edge and tied edge stresses was developed
for use in designs where free edge loading is likely (narrow truck entrances where slabs
are not tied into concrete curb and gutter). The equation for data shown in Figure 5.1.2 is
as follows:

Ore = 1.87 x Org (Eq. 5.1.1)

where,
Os = load-induced stress at a longitudinal free joint, psi
Ot = load-induced stress at a longitudinal tied joint, psi

5.2 Determination of Load-Induced Stress at Zero Temperature Gradient

Each of sites included in this study had multiple slabs instrumented for load testing. A
variety of material parameters, joint configurations, and interface preparation treatments
were studied. Each slab instrumented was load tested multiple times during the course of
a day. Load testing was scheduled for relatively hot summer days where the temperature
gradient through the concrete would be significant. The first loading of each slab was
performed shortly after sunrise when the temperature gradient was still negative (surface
cooler than slab bottom). Several additional load tests were performed throughout the
day to evaluate the effects of various temperature gradient conditions on load-induced
stresses. Load-induced stresses were plotted against the measured temperature

12
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differentials throughout the day to establish stress corresponding to a temperature
gradient of zero. Zero gradient stresses were compared with theoretical stresses. This
comparison allowed for a partial bond calibration factor to be applied to fully bonded
theoretical stresses.

5.3 Analysis of the Effect of Interface Bond on Load-Induced Concrete Stress

The effect of interface bonding was initially quantified by comparing measured stresses
(zero temperature gradient) to the computed stresses for fully bonded pavement systems.
Stresses caused by loads at mid-joint and slab corner were computed using the finite
element computer program ILLISLAB (ILSL2), assuming fully bonded concrete-asphalt
interface. ILLISLAB was developed in 1977 for the Federal Aviation Administration
(FAA) for structural analyses of concrete pavement systems. The program is based on
medium-thick plate on a Winkler (spring) foundation bending theory. It is capable of
computing stresses and deflections for panels with doweled, keyed, or aggregate interlock
Joad transfer at the joints. However, it is not capable of modeling the partially bonded
interface between whitetopping pavement layers.

Measured tied edge loading partial bond stresses were plotted as a function of theoretical
fully bonded edge stresses in Figure 5.3.1. In general, measured stresses are greater than
theoretical stresses. The slope of the "best fit" line is 1.54 which represents a 54 percent
increase in the stress due to the partial bond condition. However, to account for the
variability in the collected data, the calculated standard deviation of the coefficient was
used to derive an equation representing a 95 percent confidence for the increase in stress
due to the partial interface bond. This line, plotted in the figure, representing a 65
percent increase in the bottom edge fully bonded tensile stress calculated is as follows:

Oex = 1.65 X Gy (Eq. 5.3.1)

where,
O.x = measured experimental partially bonded stress, psi
O = calculated fully bonded stress, psi

The coefficient can be reduced to 1.63 or 1.59 for confidence levels of 90 or 75%,
respectively. Depending on the design, the engineer may opt to select a lower
confidence. For example, for a high volume roadway, the engineer would likely select a
higher confidence level than for a low-volume residential pavement.

5.4 Analysis of the Effect of Interface Bond on Load-Induced Asphalt Strain

The effect of interface bond on the load-induced asphalt surface strain was studied by
evaluating data collected in the field. Prior to construction, the surface of the asphalt was
instrumented with strain gages placed at locations corresponding to concrete joint edges
and centers. Concrete embedment gages were also installed 1/2 in. above the asphalt
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gages prior to concrete placement. Finally, concrete surface gages were installed at these
Jocations just prior to load testing. Gages at the interface were used to evaluate the
transfer of strain from the concrete bottom to the asphalt surface. The strain at the
bottom of the concrete was calculated extrapolating the concrete surface strain and the
strain measured 1/2 in. from the concrete bottom. If slabs were fully bonded, the
concrete bottom strain would equal the asphalt surface strain. Figure 5.4.1 shows a
comparison of asphalt and concrete strains for the tied edge loading case. Asphalt strains
are generally less than the concrete strains which is the result of slippage between the
layers. The equation representing the loss of strain is as follows:

€ac=0.842 X Epec (Eq.54.1)

where,
€, = measured asphalt surface strain, microstrain
€pec = measured concrete bottom strain, microstrain

There is approximately a 15 percent loss of strain transfer from the concrete to the asphalt
due to the partial bond between the layers. Stresses and strains at the bottom of the
asphalt layer decrease with loss of bond. The design procedure assumes that average
strain reductions reflecting partial bond at the interface are equally reflected at the bottom
of the asphalt layer.

5.5 Analysis of Temperature Effects on Load-Induced Stresses

Load testing was repeated throughout the course of the day to monitor the effects of
changing temperature gradients on the load induced stresses. If the temperature gradients
were not significant enough to produce curling and subsequent loss of support at slab
edges, measured load-induced stresses would not significantly change during the course
of the day. Temperature gradients throughout load testing ranged from -1 to 5 °F/in. A
significant change in stress occurred with changing temperature gradient. This is a
significant deviation from ultrathin whitetopping. Ultrathin whitetopping, by design,
requires a short joint spacing to minimize restraint stress cracking. The PCA study
recommends limiting the joint spacing to 48 in. For relatively short joint spacings, the
loss of support due to curling is less likely. Loss of support effects in the thickness
design procedure should be accounted for when joint spacings exceed 4 ft.

Once the theoretical load-induced stresses are adjusted for the partial bonding condition,
the effect of the temperature-induced curling are applied.. Figure 5.5.1 shows the percent
change in measured stress over the range of gradients tested. The relationship derived
between the change in stress and measured temperature gradient is as follows:

Og =456 x At (Eq.5.5.1)

where,
Oy, = percent change in stress from zero gradient
At = temperature gradient, °F/in.
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This relationship is applied to the partial bond stresses to account for the effect of
temperature-induced slab curling and loss of support effects on the load-induced concrete

stresses.

5.6 Development of Design Equations

Two different modes of distress may exist in whitetopping pavements, comer cracking
caused by corner loading and mid-slab cracking caused by joint loading. Both of these
types of failure were considered in developing the design equations.

5.6.1 Stress Computation Using the Finite Element Program ILSL2

For the comer and tied edge loading conditions, the following combinations of
parameters were investigated:

Joint spacing, L 48,72, and 144 in.
Concrete slab thickness, tpec 4,5, and 6 in.

Asphalt layer thickness, tac 3,6,and 91n.

Concrete modulus of elasticity, Epcc 4 million psi

Asphalt modulus of elasticity, E,. 0.05, 0.5, and 1 million psi
Concrete Poisson's ratio, Mpcc 0.15

Asphalt Poisson's ratio, Mac 0.35

Modulus of subgrade reaction, k 75, 200, and 400 pci

Mid-joint loading. Load-induced longitudinal joint stresses for a 20-kip single axle load
(SAL) and a 40-kip tandem axle load (TAL) were computed. Maximum tensile stresses
at the bottom of each layer were calculated for both the concrete and asphalt. Maximum
asphalt strains used in generating the design equations occurred for the joint loading
condition. In most cases, the joint loading condition also produced the maximum stress
at the bottom of the concrete layer. However, this may not be the case for ultrathin
whitetopping as found during the PCA study®,

Comer loading. Both a 20-kip SAL and a 40-kip TAL were applied to whitetopping slab
comners. The corner loading case was found to produce the maximum concrete stress for
relatively few conditions. In general, the corner loading case governed at higher values
of the effective radius of relative stiffness. As the stiffness increases, the load-induced
stress decreases. When the corner load case governed, relatively lower stresses resulted.
The maximum stress, whether edge or corner, was used in the derivation of the concrete
stress prediction equations.

Temperature restraint stress. Based on the information collected during the load testing

events, temperature restraint stresses were not incorporated into the design procedure. As
shown on the plots in the appendix, the surface profile was never observed to be in a
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curled down condition, even for the highest temperature gradients of 6° F/in. Slab
upward warping effects due to moisture differentials (surface drier than bottom) were
greater than measured downward temperature curling effects.

For the edge loading condition, the maximum tensile stress occurs at the bottom of the
concrete layer. At this location, the combined temperature curling and moisture warping
restraint stress is in compression. The inclusion of restraint stresses would decrease the
load-induced stresses and their omission is conservative for the edge loading case.

As previously discussed, for certain combinations of parameters (high stiffness), the
maximum load-induced stress occurs at the corer. In this case, the combined
temperature and moisture restraint stresses would be additive to load-induced stresses and
would be included in a conservative design procedure. However, for high slab stiffness
values, the resulting stress is low; typically in the range of about 100 to 150 psi when
corner loading conditions are critical. It is unlikely that restraint stresses would exceed
200 psi resulting in a combined stress of about 300 to 350 psi. It is likely that concrete
flexural strength will exceed 600 psi. resulting in a stress ratio near 0.50. In the fatigue
loading studies of concrete, maintaining a stress ratio of about 0.50 would result in nearly
an unlimited number of load repetitions for that load category. Corner loading condition
restraint stresses probably would not contribute to excessive consumption of the fatigue
life and were not incorporated into the thickness design procedure.

5.6.2 Development of Prediction Equations for Design Stresses and Strains

Prediction equations were derived for computing design concrete flexural stresses and
asphalt flexural strains. A total of four equations were developed as follows:

Concrete Stress For 20-kip SAL

Opcc =919 +18,492 /1. - 575.3 log k +0.000133 E,c (Eq.5.6.1)
R’y = 0.99
Concrete Stress For 40-kip TAL
Opcc = 671.2 - 0.000099 E,. - 437.1 log k + 1.582 x 10%/1. (Eq. 5.6.2)
R’ = 0.99
Asphalt Strain For 20-kip SAL
1/€,. = 8.51114 x 10® E,. + 0.008619 1,/L (Eq. 5.6.3)
R%,4. = 0.99
Asphalt Strain For 40-kip TAL
1/€5c = 9.61792 x 10”° Ey + 0.009776 1/L (Eq.5.64)
R%q. = 0.99
21



where,
Opcc = maximum stress in the concrete slab, psi

€ac = maximum strains at bottom of asphalt layer, microstrain
E,cc = concrete modulus of elasticity, assumed 4 million psi
E.c = asphalt modulus of elasticity, psi

toec = thickness of the concrete layer, in.

tac = thickness of the asphalt layer, in.

Mpec = Poissons ratio for the concrete, assumed 0.15

Mac = Poissons ratio for the asphalt, assumed 0.35
k = modulus of subgrade reaction, pci
le = effective radius of relative stiffness for fully bonded slabs, in.

= {Epcc * [tpcc3 /12 + tpcc * (NA - tpcc / 2)2] / [k * (1 - “vpccz)]
+Eac * [tac’ / 12 + tac *(tgoo - NA + tac/ 2)°1/ [k * (1 - a1} *
NA-= neutral axis from top of concrete slab, in.
= [Epcc * tpcc2 12+ Eac * tac * (tpcc + tac / 2)] / [Epcc * tpcc + Eac * tac]
L = joint spacing, in.

Each of the equations developed to calculate the critical stresses and strains in a
whitetopping pavement are dependent on the effective radius of relative stiffness of the
layered system. The relative stiffness of a concrete slab and subgrade was defined by
H.M. Westergaard®® to include the contribution of the supporting medium stiffness as
well as the flexural stiffness of slab in resisting load-induced deformation. The radius of
relative stiffness appears in many of the equations dealing with stresses and deflections of
concrete pavements. Whitetopping pavements include an additional structural layer of
asphalt concrete. The stiffness contribution of the asphalt layer is incorporated into the
effective radius of relative stiffness equation shown above.

5.6.3 Adjustment of the Stress Predictions

Equations were developed to adjust the theoretical stresses and strains to account for
conditions such as partial bond and loss of support due to temperature-induced slab
curling. The stresses computed were for whitetopping pavements with fully bonded
concrete and asphalt layers. Field tests and theoretical analysis have shown that
whitetopping pavements are partially bonded composite pavements. As previously
presented, an increase in concrete flexural stress of 65 percent from fully bonded
pavements would be required to account for the loss of bonding at the 95 percent
confidence level. Asphalt strains are decreased by 15 percent to account for the partial
bonding condition. Effects of temperature-induced slab curling on load-induced stresses
were also included in the thickness design procedure.

22



5.7 PCC and Asphalt Concrete Fatigue

The Portland Cement Association (PCA) developed a fatigue criterion®® based on
Miner’s hypothesis(zﬁ) that fatigue resistance not consumed by repetitions of one load is
available for repetitions of other loads. In a design, the total fatigue should not exceed
100%. The concrete fatigue criterion was incorporated as follows:

For SR > 0.55
Log;o(N) = (0.97187 - SR) / 0.0828 (Eq. 5.7.1)
For 0.45 < SR <0.55
N = (4.2577 / (SR - 0.43248 ))**% (Eq. 5.7.2)
For SR < 0.45
N = Unlimited (Eq. 5.7.3)
where,

SR = flexural stress to strength ratio
N = number of allowable load repetitions

Asphalt pavements are generally designed based on two criteria, asphalt concrete fatigue
and subgrade compressive strain. Subgrade compressive strain criterion was intended to
control pavement rutting for conventional asphalt pavements. For whitetopping
pavements, when the asphalt layer is covered by concrete slabs, pavement rutting will not
be the governing distress. Therefore, the asphalt concrete fatigue was used as the design
criterion in this procedure. The asphalt concrete fatigue equation developed by the
Asphalt Institute®” was employed in the development of the whitetopping design
procedure. The asphalt concrete fatigue equation is as follows:

N=C*18.4* (432X 10°) * ( 1/ €,)*% * (1 / E,0)*®* (Eq. 5.7.4)

where,
N = number of load repetitions for 20% or greater AC fatigue cracking

€, = maximum tensile strain in the asphalt layer
E,. = asphalt modulus of elasticity, psi

C = correction factor = 10™

M=4.84*[(Vy/ (Vy+ Vp) - 0.69]

Vp = volume of asphalt, percent

V, = volume of air voids, percent

For typical asphalt concrete mixtures, M would be equal to zero. The correction factor,
C, would become one, and was omitted from the equation. However, since whitetopping
is designed to rehabilitate deteriorated asphalt pavement, the allowable number of load
repetitions (N) needs to be modified to account for the amount of fatigue life consumed
prior to whitetopping construction. Therefore, the calculated repetitions must be
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multiplied by the fractional percentage representing the amount of fatigue life remaining
in the asphalt concrete. For example, if it is determined that 25 percent of the asphalt
fatigue life has been consumed prior to whitetopping, the calculated allowable repetitions
remaining must be multiplied by 0.75.

The whitetopping pavement thickness design involves the selection of the proper
concrete slab dimension and thickness. Two criteria were used in governing the
pavement design; asphalt and concrete fatigue under joint or corner loading.
Temperature and loss of support effects were also considered in the design procedure. A
design example is presented in next section to illustrate how to use the developed
procedure to calculate the required whitetopping concrete thickness.

5.8 A Whitetopping Pavement Design Example

An example problem is presented to illustrate the steps involved in the design procedure.
The example represents the design of a whitetopping project for a secondary roadway.
Based on traffic surveys, it was determined that approximately 50 percent of the asphalt
concrete fatigue life has been consumed to date. Visual inspection of the existing
pavement indicates that asphalt fatigue cracking is not too severe (magnitude and
quantity) and supports the decision to use a whitetopping rehabilitation. Results are
presented in Tables 5.8.1 and 5.8.2 for the expected loads (Column 1 in Table 5.8.1) and
expected number of repetitions (Column 8 in Table 5.8.2). Parameters and material
properties used in the design are the following:

asphalt modulus of elasticity, E,. = 600,000 psi
asphalt thickness, t,c = 7 in.

existing modulus of subgrade reaction, k = 200 pci
concrete modulus of elasticity, E,.. = 4,000,000 psi
concrete modulus of rupture, MR = 650 psi
concrete Poisson's ratio, MUyec = 0.15

asphalt Poisson's ratio, Wy = 0.35

temperature differential, At = 3° F per in. throughout the day
trial concrete thickness =5 %2 in.

joint spacing, L = 72 in.

existing asphalt fatigue = 50 percent

Procedure Steps:

1. Determine le and L/le for the set of design parameters.

le=32.77
1L1.=2.20
24
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2. Using the calculated 1. and L/l along with the modulus of subgrade reaction, k,
Equation 5.6.1 is used to compute the load-induced critical concrete stresses (Col.
2 in Table 5.8.1) and Equation 5.6.3 is used to compute the load-induced critical
asphalt strains (Col. 3 in Table 5.8.1) for anticipated 20-kip single axle loads
(SAL). Stresses and strains for the remaining axle loads are computed as ratios of
the 20-kip SAL load. Results are presented in the upper portion of Table 5.8.1.

3. Repeat step 2 for the anticipated tandem axle loads (TAL). Use Equation 5.6.2 to
compute the concrete stresses and Equation 5.6.4 to compute the asphalt strains
for a 40-kip TAL shown in the lower portion of Columns 2 and 3 in Table 5.8.1.

4. Using Equations 5.3.1 and 5.4.1, compute the partial bond adjustment to the
computed fully bonded concrete stresses and asphalt strains. Adjust the stresses
and strains accordingly as shown in Columns 4 and 5 of Table 5.8.1, respectively.

5. Use Equation 5.5.1 to adjust the concrete stress to account for the loss of support
due to temperature-induced concrete slab curling. There is no adjustment for the
asphalt strains. Therefore, Columns 6 and 7 of Table 5.8.1 reflect the total
concrete stresses and asphalt strains due to the anticipated loading and
temperature gradient.

6. With the total concrete stresses and asphalt strains known, the fatigue analyses are
conducted. Separate fatigue analyses must be done for the concrete and asphalt
layers. For a given set of parameters, one of the two analyses will govern and
determine the required concrete thickness for the selected joint spacing.

7. Compute the concrete stress ratio, SR, in Column 9, by dividing the total concrete
stresses in Column 6 by the design concrete modulus of rupture.

8. Using the stress ratio and Equations 5.7.1 to 5.7.3, determine the allowable
repetitions for the concrete layer in Column 10.

9. Compute the percent fatigue in Column 11 by dividing Column 8 by Column 10,
multiplying by 100, and totaling the concrete fatigue damage for all axle loadings.

10. Enter the maximum asphalt microstrain from Column 7 into Column 12 as
shown.

11. Using the existing asphalt modulus of elasticity and the microstrains in Column
12, compute the allowable load repetitions for the asphalt layer from Equation
5.7.4 and enter these values into Column 13.

12. The percent fatigue for the asphalt layer and the total asphalt fatigue damage is
computed the same way as used for the concrete fatigue computation in Step 9
accept there is the addition of the fatigue damage consumed prior to whitetopping
construction. Sum the percent fatigue for the given load cases as well as the
percentage previously consumed to compute the total asphalt fatigue damage at
the bottom of Column 14.
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Example Summary. In this case, the concrete fatigue analysis governed. The critical
stresses at the extreme fiber of the concrete slab cause greater damage than the critical
strains at the bottom extreme fiber of the asphalt layer. For the existing asphalt and
subgrade conditions, a concrete whitetopping thickness of 5 2 in. with a joint spacing of
72 in. is shown to be sufficient to carry the anticipated traffic loading.

6.0 MODIFIED DESIGN PROCEDURE INCORPORATING ESALs

The State of Colorado currently designs pavements using the procedure developed by the
American Association of State Highway and Transportation Officials (AASHTO)®®.
This empirical procedure is based on pavement performance data collected during the
AASHO Road Test in Ottawa, IL in the late 1950’s and early 1960’s. Traffic (frequency
of axle loadings) is represented by the concept of the Equivalent 18-kip Single Axle Load
(ESAL). Factors are used to convert the damage caused by repetitions of all axles in the
traffic mix (single and tandem) to an equivalent damage due to 18-kip ESALSs alone.
Because the relative damage caused by ESALs is a function of the pavement thickness, a
series of ESAL conversion factors have been developed for a range of concrete
thicknesses. However, the minimum concrete thickness included in the AASHTO design
manual is 6 in. Since whitetopping thicknesses below 6 in. are anticipated, it was
necessary to develop correction factors to convert ESAL estimations based on thicker
concrete sections. Also, because the ESAL method of design appears to overestimate the
required PCC thickness, it was necessary to develop a conversion factor which would
make the empirical and mechanistic procedures more compatible.

6.1 Converting Estimated ESALSs to Whitetopping ESALs

The State of Colorado provided axle distributions for two highway categories (Primary
and Secondary) anticipated as typical whitetopping traffic loading. The ESAL
conversion factors were for an 8-in.-thick concrete pavement and a terminal serviceability
of 2.5. The conversion factors were extrapolated for pavement thicknesses as low as 4 in.
and the total ESALs were computed for a range of possible whitetopping thicknesses.
For each highway category, ESAL conversions were developed as a percentage of the
total ESALs computed for an 8-in.-thick concrete pavement. Figure 6.1.1 shows the
curves developed for converting total estimated ESALs based on an assumed concrete
thickness of 8 in. With these conversions, the designer only needs to obtain the design
ESALs based on an assumed concrete thickness of 8 in. For each trial whitetopping
thickness, the total ESAL estimation is adjusted based on the following conversion
equations:

Primary Highway: ~ Fgsar = 0.985 + 10.057 * (tpcc) >4 (Eq. 6.1.1)
Secondary Highway: FgsaL = (1.286 —2.138/ tpcc)'1 v (Eq. 6.1.2)
28
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where,
Fesar = Conversion factor from ESAL estimation based on assumed
8-in.-thick concrete pavement
toec = thickness of the concrete layer, in.

For example, for the design of a 4 ¥2-in.-thick whitetopping for a secondary highway, the
estimated ESALs based on an assumed 8-in.-thick pavement, say 750,000, should be
converted to 925,000 using the secondary highway conversion equation (Eq. 6.1.1).

6.2 Modified Whitetopping Thickness Design Conversion

Converting the traffic distribution to ESALs and using that value as the expected number
of 18-kip axle load repetitions (and setting all other axle loads to zero repetitions) does
not result in a design thickness equal to that calculated for the original axle load
distribution. For instance, in the example shown in Tables 5.8.1 and 5.8.2, for the axle
load traffic distribution given, the required whitetopping thickness is 5.5 in. Using
AASHTO conversion factors for an assumed 8-in.-thick pavement, and the secondary
highway conversion discussed in the previous section, the estimated number of ESALs is
245,544. Inputting this number of expected repetitions for the 18-kip axle load and
setting all other axles loads to zero repetitions results in about 1,440 percent fatigue life
consumed. For the ESALSs computed, the required thickness is calculated to be over 6.5
in. Therefore, a conversion was developed to equate the two design procedures.

Comparative designs were calculated for a series of input parameters for the two
procedures. Ranges of input parameters were as follows:

asphalt modulus of elasticity, E,c = 50,000 to 1,000,000 psi
asphalt thickness, t,c = 3 to 9 in.

existing modulus of subgrade reaction, k = 100 to 400 pci
concrete modulus of rupture, MR = 550 to 750 psi

Input parameters kept constant were the following:

concrete modulus of elasticity, Epec = 4,000,000 psi
concrete Poisson's ratio, Uyec = 0.15
asphalt Poisson's ratio, Uac = 0.35

temperature differential, At = 3° F per in. throughout the day
joint spacing, L = 72 in.

A comparison of the required PCC thickness calculated by both design procedures is
shown in Figure 6.2.1. The mechanistic procedure utilizes axle load distribution and the
empirical procedure uses ESALs. As shown by the line of equality, the two design
methods do not result in equal design thicknesses. However, the trend suggests that a
relationship exists between the two procedures to allow a trial thickness to be converted
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prior to being input into the ESAL design procedure. The equation developed to convert
the trial whitetopping thickness to an input thickness is as follows:

toveut = -0.0728 * (trrian)2 + 1.4675 * (trriaL) + 0.8638 (Eq. 6.2.1)

where,
tweut = converted concrete thickness to be input into the ESAL design
procedure calculations
trriaL = trial concrete thickness which becomes whitetopping thickness
specified

As shown in Figure 6.2.1, this correlation was developed for whitetopping thickness
below 8 in. and should not be extrapolated further. Field data was collected on a
maximum PCC thickness of about 7 in. and the design procedure equations were
developed from theoretical stresses for concrete with a maximum thickness of 6 in.
Load-induced stresses for thicker concrete sections have not been verified by field testing
and, therefore, it is not recommended that this procedure be used to design whitetopping
sections greater than about 7 in.

Equations 5.6.1 and 5.6.3 were modified as follows to calculate the stress and strain due
to an 18-kip Single Axle Load:

Concrete Stress For 18-kip SAL
Opcc = 18/20 * (919 +18,492 /1. - 575.3 log k + 0.000133 E,.) (Eq. 6.2.2)

Asphalt Strain For 18-kip SAL
1/€,. = 18/20 * (8.51114 x 10™ E, + 0.008619 1./L) (Eq. 6.2.3)

Figure 6.2.2 shows the calculations for the design example presented in Tables 5.8.1 and
5.8.2. As shown, arequired thickness of 5 % in. is the result of the modified design
approach incorporating ESALs. While this is slightly different from the 5%z in. thickness
required by the mechanistic procedure, it is within the standard deviation typically
achieved by slip-form pavers.

7.0 SENSITIVITY ANALYSIS

Sensitivity analyses were conducted for calculated whitetopping thickness. Parameters
studied for sensitivity include asphalt thickness, modulus of subbase/subgrade reaction,
asphalt modulus of elasticity, concrete flexural strength, and the expected number of 18-
kip ESALs.

As shown in Figures 7.0.1 and 7.0.2, the minimum concrete thickness is somewhat
sensitive to Jower moduli of subbase/subgrade reaction. Figure 7.0.1 shows, for a wide
range of asphalt thicknesses, the required concrete thickness significantly increases at a
subgrade modulus less than 150 pci. This sensitivity is more apparent in Figure 7.0.2 for
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Figure 6.2.2 - Design Example Incorporating ESAL:s for Traffic Input

Whitetopping Input Parameters

Highway Category (Primary or Secondary)*  Secondary
Joint Spacing, in. 72
Trial Concrete Thickness, in. 5.23
Converted Concrete Thickness, in. 6.55
Concrete Flexural Strength, psi 650
Asphalt Thickness, in. 7
Asphalt Elastic Modulus, psi 600,000
Asphalt Fatigue Life Previously Consumed, % 50
Subgrade Modulus, pci 200
Temperature Gradient, °F/in. 3
Design ESALs 245,544
ESAL Conversion Factor 1.0418
Concrete Elastic Modulus, psi 4,000,000
Concrete Poisson's Ratio 0.15
Asphalt Poisson's Ratio 0.35
Neutral Axis 4.21
le = 35.05
Lie = 2.05
Critical Concrete Stresses and Asphalt Strains
Load Induced Bond Adjustment Support Adjustment
Stress, psi | ustrain | Stress, psi| pstrain | Stress, psi| Mstrain
1 2 3 4 5 6
182 97 301 82 342 82
ESAL Fatigue Analysis
No. of Concrete Fatigue Analysis Asphalt Fatigue Analysis
18-kip Stress | Allowable | Fatigue, | Asphalt | Allowable | Fatigue,
ESALs Ratio ESALs % pstrain ESALs %
7 8 9 10 11 12 13
2.6E+05 | 0.526 | 2.6E+05 98.1 82 1.3E+07 2.0
Concrete Fatigue, % = 98.1 Asphalt Fatigue, % = 52.0

Required Whitetopping Thickness =

33
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the mid-range 6-in. asphalt thickness. Therefore, it is recommended that this design
procedure be used only when the modulus of subbase/subgrade reaction exceeds 150 pci.
However, as a rehabilitation procedure for existing asphalt pavements, it is likely that the
modulus of subbase/subgrade reaction will be higher than 150 pci.

Figure 7.0.3 shows the minimum concrete thickness sensitivity to asphalt modulus of
elasticity. While the required thickness is fairly sensitive at very low asphalt moduli
(50,000 psi), the minimum thickness of the asphalt layer should not be lower than about 5
in. At asphalt thicknesses below 5 in., the required concrete thickness, as calculated
using this design procedure, increases with an increase in the asphalt modulus of
elasticity. This phenomenon should be investigated during the verification process of this
design procedure. A range of asphalt moduli and thicknesses should be included in the
whitetopping design verification study.

Whitetopping thickness sensitivity as a function of the concrete flexural strength and
temperature gradient is shown in Figures 7.0.4 and 7.0.5, respectively. While the
thickness is somewhat sensitive to the flexural strength, it is likely flexural strengths of
650 psi can be specified and achieved for use in whitetopping construction. Thickness is
not very sensitive to anticipated concrete temperature gradients as shown in Figure 7.0.5.

Whitetopping thickness sensitivity to the expected number of 18-kip ESALSs are shown in
Figures 7.0.6 to 7.0.8. Thicknesses are not too sensitive to the number of ESALSs above 1
million except under various levels of asphalt modulus of elasticity shown in Figure
7.0.7. It is shown that the required concrete thickness is not sensitive to asphalt modulus
at traffic loading below 4 million ESALs. However, above 4 million ESALSs, the
limitations of the asphalt modulus are become apparent. For example, whitetopping
should not be specified when the asphalt modulus is below 400,000 psi and the expected
number of ESALs exceeds 5 million. The effect of a lower asphalt thickness is shown in
Figure 7.0.6 supporting the suggested minimum thickness of about 5 in. The detrimental
effect of relatively low moduli of subbase/subgrade reaction is also shown on Figure
7.0.8.

While the sensitivity of whitetopping will be better understood with continuing research,
based on Figures 7.0.1 to 7.0.8, the design of whitetopping concrete for the rehabilitation
of deteriorated asphalt concrete pavements is sensitive to certain existing in situ
conditions. The greatest sensitivity of the minimum required concrete thickness is to the
modulus of subbase/subgrade reaction. The effect of lower subgrade moduli was
observed in all cases studied. The procedure is also sensitive to existing asphalt thickness
and, in certain cases, modulus of elasticity. The design engineer should pay particular
attention to these limiting parameters when using this procedure to design whitetopping
pavement. However, in any case, the procedure was based on whitetopping thicknesses
in the range of 4 to about 7 in. For thicknesses above 7 in., it is recommended that the
engineer compare whitetopping to a design based on the AASHTO procedure. Also, it is
recommended that an AASHTO design be specified if this procedure results in a design
whitetopping thickness in excess of 8 in.
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8.0 SUMMARY AND CONCLUSIONS

A mechanistic pavement design procedure for whitetopping pavement was developed
through a comprehensive study involving extensive field load testing and theoretical
analysis of whitetopping responses. Two types of pavement failure were considered in
this procedure; portland cement concrete fatigue under joint or corner loading and asphalt
concrete fatigue under joint loading. Temperature induced stresses and strains were not
included in the design procedure. The developed procedure was also modified to
incorporate the number of expected Equivalent 18-kip Single Axle Loads (ESALSs)
currently used by the State of Colorado for the design of concrete pavements.

The design examples presented in Tables 5.8.1 and 5.8.2 and Figure 6.2.2 showed that
this procedure gave reasonable results. However, the design procedure is viewed as the
first generation design method. It should be refined as more field performance data
(especially long-term performance data) becomes available.

Based on the field and theoretical analyses conducted during this study, the following
conclusions can be made:

1. Whitetopping pavements behave as partially bonded systems and should be
designed accordingly.

2. A good bond within the concrete/asphalt interface is essential for successful
whitetopping performance.

3. For existing asphalt pavement being rehabilitated, the strain (and corresponding
stress) in the whitetopping is reduced by approximately 25 percent when the
asphalt is milled prior to concrete placement. The opposite was found for new
asphalt placed as a whitetopping base. The strain (and corresponding stress) in
whitetopping on new asphalt is increased by approximately 50 percent when the
asphalt is milled prior to concrete placement.

4. Due to the partial bonding condition, the tensile stress in the bottom of the
concrete layer is 65 percent higher than that of a fully bonded slab system.

5. Due to the partial bonding condition, the tensile strain in the bottom of the asphalt
layer is approximately 15 percent lower than that of a fully bonded slab system.

6. At joint spacing greater than 48 in., temperature gradients in the concrete layer
increase the load-induced tensile stress. An equation was developed to calculate
the percent increase in stress due to a temperature gradient.

7. Based on data collected, it appears that whitetopping pavements should be
constructed when the modulus of subbase/subgrade reaction exceeds 150 pci.

8. A minimum asphalt thickness of 5 in. (after milling) is recommended for
whitetopping pavement.

9. The current design procedure does not appear to be highly sensitive to the number
of expected ESALs. However, this should be verified by long-term experience.
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The methods outlined in this report are intended as a first generation whitetopping design
procedure. The following recommendations for future work are provided:

1.

This method was developed based on information collected during three field
evaluations. While an attempt was made to study a range of parameters, it is
highly recommended that further studies be conducted to validate the design
procedure outlined.

The effect of partial bonding on concrete stress and asphalt strain should be
studied further. The effects of milling need to be investigated further. An
increase in the bonding of the layers will lower the 65 percent stress increase
currently incorporated into the design procedure. Likewise, the asphalt strain may
be affected (positively or negatively) by an increased interface bond strength.

. The effect of load transfer devices were investigated during this study. No

significant effects were observed in the newly constructed whitetopping
pavements. However, load transfer devices will effect the performance of the
pavement if the asphalt deteriorates or the amount of curling in the concrete layer
becomes excessive. These are long term processes which should be monitored.

The maximum joint spacing could not adequately be determined due to the
relatively few joint spacings evaluated. In fact, the joint spacing variable could
not be included in the equations developed to calculate the maximum stress. At
this time, a joint spacing of 72 in. seems reasonable.

The effects of lower moduli of subbase/subgrade reaction should be investigated
further. The minimum subgrade modulus studied during this evaluation was 150
pci. It is recommended that lower moduli be investigated.

The long-term performance of whitetopping should be evaluated. Periodic
surveys of whitetopping pavements should be performed to document the
occurrence of distress. This information can be incorporated into the design
procedure once it becomes available.
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Appendix A:
CDOT1 Layout, Photos, Temperatures, and Profiles
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Figure A.1 - Test Slab 1 Layout for CDOT Project #1.
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Figure A.7 - Typical Strain Gage Layout and Load Testing Setup at CDOT Project #1



Figure A.9 - Typical Placement of Truck Tires Adjacent to Strain Gages for Load Testing
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Appendix B:
CDOT2 Layout, Photos, Temperatures, and Profiles
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Appendix C:
CDOT3 Layout, Photos, Temperatures, and Profiles
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Figure C.1 - Test Slab F Layout for CDOT Project #3.
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Figure C.6 - Typical Placement of Truck Tires Adjacent to Strain Gages for Load Testing
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Figure B.8 - Installed Invar Reference Rod Prior to Paving



Figure B.10 - Installing Concrete Surface Gages at CDOT Project #2



Figure B.11 - Load Testing at CDOT Project #2

Figure B.12 - Typical Placement of Truck Tires Adjacent to Strain Gages for Load Testing



Figure B.13 - Collecting Profile Elevation Measurements Using the Dipstick at CDOT Project #2
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